Chapter 4 Polynomial Functions

- 1. Graphing Polynomial Functions
- 2. Adding, Subtracting, and Multiplying Polynomials
- 3. Dividing Polynomials
- 4. Factoring Polynomials
- 5. Solving Polynomial Equations
- 6. The Fundamental Theorem of Algebra
- 7. Transformations of Polynomial Functions
- 8. Analyzing Graphs of Polynomial Functions
- 9. Modeling with Polynomial Functions

1 of 11

Simplify these polynomials

$$-4y^{3} + 2y^{2} - y + 2 + y^{2} - 6y + 9$$
$$-4y^{3} + 3y^{2} - 7y + 11$$

$$(7z^2 - 4z) - (5z^2 - z + 3)$$
$$2z^2 - 3z - 3$$

2 of 11

Simplify these polynomials

1.
$$2x^3 - 7 + 5x^2 - x^3 + 3x - x^3$$
 $5x^2 + 3x - 7$

$$5x^2 + 3x - 7$$

2.
$$x^2y^2 - x^2 + 8x^2y^2 + 5xy^2 - 2x^2$$
 $-3x^2 + 9x^2y^2 + 5xy^2$

$$-3x^2 + 9x^2y^2 + 5xy^2$$

Find sum or difference

1.
$$(t^2-6t+2)+(5t^2-t-8)$$

2.
$$(8d-3+9d^3)-(d^3-13d^2-4)$$

3 of 11

Simplify these polynomials

1.
$$3(x^2 - 2x + 4) + 2(5x^2 - 7)$$

$$13x^2 - 6x - 2$$

2.
$$4(3y^2 - 2y) + 3(y^2 + 5y - 1)$$
 $15y^2 + 7y - 3$

$$15y^2 + 7y - 3$$

4 of 11

Exponents

$$(a^5)^3 = a^{15}$$

$$(x^m)^n = x^{mn}$$

$$(3x)^4 = 81x^4$$

$$(2x^2y^3)^5 = 32x^{10}y^{15}$$

1.
$$(2x^5)^4$$

$$16x^{20}$$

2.
$$(-3x^k)^3$$

$$-27x^{3k}$$

3.
$$(2x^3y(3x^2y^5))^3$$

$$216x^{15}y^{18}$$

5 of 11

Multiply these polynomials

1.
$$(2x-3)(3x+6)$$

 $= 6x^2 + 12x - 9x - 18$
2. $(3x+2)(2x^2 - 3x + 1)$
 $= 6x^3 - 9x^2 + 3x + 4x^2 - 6x + 2$
 $= 6x^2 + 3x - 18$
 $= 6x^3 - 5x^2 - 3x + 2$

$$3. (2x + 3y)^2$$
$$= 4x^2 + 12xy + 9y^2$$

Special Product Patterns

Sum and Difference

$$(a+b)(a-b) = a^2 - b^2$$

Example

$$(x + 3)(x - 3) = x^2 - 9$$

Square of a Binomial

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

Example

$$(y + 4)^2 = y^2 + 8y + 16$$

$$(2t-5)^2 = 4t^2 - 20t + 25$$

Cube of a Binomial

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

Example

$$(z + 3)^3 = z^3 + 9z^2 + 27z + 27$$

$$(m-2)^3 = m^3 - 6m^2 + 12m - 8$$

Find the product

a.
$$(4x^2 + x - 5)(2x + 1)$$

b.
$$(5a + 2)^2$$

c.
$$(xy - 3)^3$$

Pascal's Triangle

	n	$(a+b)^n$	Binomial Expansion	Pascal's Triangle						
0th row	0	$(a + b)^0 =$	1				1			
1st row	1	$(a+b)^1 =$	1a + 1b			1		1		
2nd row	2	$(a+b)^2 =$	$1a^2 + 2ab + 1b^2$			1	2	1		
3rd row	3	$(a+b)^3 =$	$1a^3 + 3a^2b + 3ab^2 + 1b^3$		1	3		3	1	
4th row	4	$(a+b)^4=1$	$a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + 1b^4$		1	4	6	4	1	
5th row	5	$(a+b)^5=16$	$a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + 1b^5$	1	5	10		10	5	1

Expand
$$(x-2)^5$$

6 of 11

Pascal's Triangle

7 of 11

Pascal's Triangle

What is $(a + b)^6$?

What is $(a - b)^5$?

Practice - Pascal's Triangle

1.
$$(x-3)^5$$

$$x^5 - 15x^4 + 90x^3 - 270x^2 + 405x - 243$$

2.
$$(a+2b)^6$$

$$a^{6} + 12a^{5}b + 60a^{4}b^{2} + 160a^{3}b^{3} + 240a^{2}b^{4} + 192ab^{5} + 64b^{6}$$

9 of 11

Factorials

$$12! = 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 479,001,600$$

$$6! = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 720$$

$$\frac{12!}{6!} =$$

10 of 11

Possible combinations of letters A, B, and C?

$$3! = 3 \cdot 2 \cdot 1 = 6$$

Possible combinations of 12 people sitting in 6 chairs?

$$\frac{12!}{6! \cdot 6!} = {}_{12}C_6$$

11 of 11

What is the coefficient of $x^{21}y^5$?

$$_{26}C_{21} = {}_{26}C_5 = \frac{26!}{21! \cdot 5!}$$

1. Coefficient of x^9y^{22} ?

2. Coefficient of $x^{12}y^9$?

$$_{31}C_9 = \frac{31!}{9! \cdot 22!}$$

$$_{21}C_{12} = \frac{21!}{12! \cdot 9!}$$

3. Coefficient of x^3 in expansion of $(3x + 2)^5$?

$$_{5}C_{3}(3x)^{3}(2)^{2} = \frac{5!}{3! \cdot 2!}(27x^{3})(4) = 1080x^{3}$$

